ME 261: Numerical Analysis

Lecture-9&10: Numerical Interpolation

Md. Tanver Hossain Department of Mechanical Engineering, BUET

http://tantusher.buet.ac.bd

- To estimate intermediate values between precise data points most commonly used method used is polynomial interpolation
- For n+1 data points, there is **only one polynomial of order n** that passes through **all n+1 data points**

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

- There are two different ways regarding the formats of the polynomial expression, namely:
 - The Newton polynomial of interpolation
 - The Langrange polynomial of interpolation

(a) first-order (linear) connecting two points, (b) second order (quadratic or parabolic) connecting three points(c) third-order (cubic) connecting four points.

Newton's Divided-Difference Interpolating polynomial

- Linear Interpolation
- The simplest form of interpolation
- The interpolating polynomial is of first order/linear (i.e. two points are necessary)

$$\frac{f_1(x) - f(x_0)}{x - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$

- The **slope** of the interpolating polynomial is the **finite divided-difference** approximation of the first derivative
- The **smaller** the interval, the **better** the approximation

• Estimate the natural logarithm of 2 using linear interpolation.

Two linear interpolations to estimate In 2. Note how the smaller interval provides a better estimate.

Newton's Divided-Difference Interpolating polynomial

- Quadratic Interpolation
- Linear approximation is very raw
- The accuracy of interpolation can be improved by introducing higher order interpolation polynomial if more data points are known
- Let us assume three data points are known at x₀, x₁ and x₂

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

$$f_2(x) = b_0 + b_1 x - b_1 x_0 + b_2 (x^2 - x x_1 - x x_0 + x_0 x_1)$$

$$= b_0 + b_1 x - b_1 x_0 + b_2 x^2 - b_2 x x_1 - b_2 x x_0 + b_2 x_0 x_1$$

$$= b_0 - b_1 x_0 + b_2 x_0 x_1 + (b_1 - b_2 x_0 - b_2 x_1) x + b_2 x^2$$

$$f_2(x) = a_0 + a_1 x + a_2 x^2$$

Our goal

$$a_0 = b_0 - b_1 x_0 + b_2 x_0 x_1$$

$$a_1 = b_1 - b_2 x_0 - b_2 x_1$$

$$a_2 = b_2$$

To determine the constants b₀, b₁, and b₂

$$f_{2}(x) = b_{0} + b_{1}(x - x_{0}) + b_{2}(x - x_{0})(x - x_{1})$$

$$at x = x_{0}; \quad f(x_{0}) = b_{0};$$

$$at x = x_{1}; \quad f(x_{1}) = b_{0} + b_{1}(x_{1} - x_{0});$$

$$at x = x_{2}; \quad f(x_{2}) = b_{0} + b_{1}(x_{2} - x_{0}) + b_{2}(x_{2} - x_{0})(x_{2} - x_{1});$$

$$b_{0} = f(x_{0})$$

$$b_{1} = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$f(x_{2}) = b_{0} + b_{1}(x_{2} - x_{0}) + b_{2}(x_{2} - x_{0})(x_{2} - x_{1})$$

$$= b_{0} + b_{1}(x_{2} - x_{1} + x_{1} - x_{0}) + b_{2}(x_{2} - x_{0})(x_{2} - x_{1})$$

$$= b_{0} + b_{1}(x_{2} - x_{1}) + b_{1}(x_{1} - x_{0}) + b_{2}(x_{2} - x_{0})(x_{2} - x_{1})$$

$$= b_{0} + b_{1}(x_{2} - x_{1}) + f(x_{1}) - f(x_{0}) + b_{2}(x_{2} - x_{0})(x_{2} - x_{1})$$

$$= f(x_{0}) + b_{1}(x_{2} - x_{1}) + f(x_{1}) - f(x_{0}) + b_{2}(x_{2} - x_{0})(x_{2} - x_{1})$$

$$= b_{1}(x_{2} - x_{1}) + f(x_{1}) + b_{2}(x_{2} - x_{0})(x_{2} - x_{1})$$

$$f(x_{2}) - f(x_{1}) = b_{1}(x_{2} - x_{1}) + b_{2}(x_{2} - x_{0})(x_{2} - x_{1})$$

$$\frac{f(x_{2}) - f(x_{1})}{(x_{2} - x_{1})} = b_{1} + b_{2}(x_{2} - x_{0})$$

$$b_{2}(x_{2} - x_{0}) = \frac{f(x_{2}) - f(x_{1})}{(x_{2} - x_{1})} - \frac{f(x_{1}) - f(x_{0})}{(x_{1} - x_{0})}$$

$$b_{2} = \frac{f(x_{2}) - f(x_{1})}{(x_{2} - x_{1})} - \frac{f(x_{1}) - f(x_{0})}{(x_{1} - x_{0})}$$

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

$$b_0 = f(x_0)$$

$$b_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$b_2 = \frac{\frac{f(x_2) - f(x_1)}{(x_2 - x_1)} - \frac{f(x_1) - f(x_0)}{(x_1 - x_0)}}{x_2 - x_0}$$

$$f_{2}(x) = f(x_{0}) + \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}} (x - x_{0}) + \frac{\frac{f(x_{1}) - f(x_{1})}{(x_{2} - x_{1})} - \frac{f(x_{1}) - f(x_{0})}{(x_{1} - x_{0})}}{x_{2} - x_{0}} (x - x_{0})(x - x_{1})$$

$$f_{1}(x) = f(x_{0}) + \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}} (x - x_{0})$$

 Second order interpolation equation contains one extra term in comparison to that of a first order interpolation equation that introduces second order curvature

ME 261: Numerical Analysis

Fit a second-order polynomial to the three points. Use the polynomial to evaluate ln 2.

$$x_0 = 1$$
 $f(x_0) = 0$
 $x_1 = 4$ $f(x_1) = 1.386294$
 $x_2 = 6$ $f(x_2) = 1.791759$

General Form of Newton's Interpolating polynomial

- Nth order Interpolation polynomial
- To fit an nth-order polynomial for n + 1 data points as:

$$f_n(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + \cdots + b_n(x - x_0)(x - x_1) + \cdots + (x - x_{n-1})$$

• Known Data points [x₀, f(x₀)], [x₁, f(x₁)], ..., [x_n, f(x_n)] can be used to evaluate the coefficients b₀, b₁,..., b_n as:

$$b_0 = f[x_0] = f(x_0)$$

$$b_1 = f[x_1, x_0]$$

$$b_2 = f[x_2, x_1, x_0]$$

$$\vdots$$

$$b_n = f[x_n, x_{n-1}, \dots, x_1, x_0]$$

The bracketed function evaluations f [x_i, x_i] are finite divided differences

ME 261: Numerical Analysis

• Example, the first finite divided difference is represented generally as

$$f[x_i, x_j] = \frac{f(x_i) - f(x_j)}{x_i - x_j}$$

• The second finite divided difference, which represents the difference of two first divided differences, is expressed generally as

$$f[x_i, x_j, x_k] = \frac{f[x_i, x_j] - f[x_j, x_k]}{x_i - x_k}$$

• Similarly, the *nth finite divided difference* is

$$f[x_n, x_{n-1}, \dots, x_1, x_0] = \frac{f[x_n, x_{n-1}, \dots, x_1] - f[x_{n-1}, x_{n-2}, \dots, x_0]}{x_n - x_0}$$

$$b_{0} = f[x_{0}] = f(x_{0})$$

$$b_{1} = f[x_{1}, x_{0}] = \frac{f[x_{1}] - f[x_{0}]}{x_{1} - x_{0}} = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$b_{2} = f[x_{2}, x_{1}, x_{0}] = \frac{f[x_{2}, x_{1}] - f[x_{1}, x_{0}]}{x_{2} - x_{0}} = \frac{\frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}} - \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}}{x_{2} - x_{0}}$$

 $b_n = f[x_n, x_{n-1}, \dots, x_{1,n}] = \frac{f[x_n, x_{n-1}, \dots, x_1] - f[x_{n-1}, x_{n-2}, \dots, x_0]}{x_n - x_0}$

 b_1 : First Finite divided difference $[\approx f'(x)]$

 b_2 : Second Finite divided difference $[\approx f''(x)]$

b_n: nth Finite divided difference

i	x i	$f(x_i)$	First	Second	Third
O 1 2 3	x ₀ x ₁ x ₂ x ₃	$ \begin{array}{cccc} f(x_0) & & & \\ f(x_1) & & & \\ f(x_2) & & & \\ f(x_3) & & & \\ \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

FIGURE 18.5

Graphical depiction of the recursive nature of finite divided differences.

$$f[x_j, x_{j-1}, ..., x_{i+1}, x_i] = \frac{f[x_j, ..., x_{i+1}] - f[x_{j-1}, ..., x_i]}{x_j - x_i}$$

Example

Construct a 4th order polynomial in Newton form that passes through the following points:

i	0	1	2	3	4
x_i	0	1	-1	2	-2
$f(x_i)$	-5	-3	-15	39	-9

4th order polynomial:

$$f_4(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + b_3(x - x_0)(x - x_1)(x - x_2) + b_4(x - x_0)(x - x_1)(x - x_2)(x - x_3)$$

$$f_4(x) = b_0 + b_1(x - 0) + b_2(x - 0)(x - 1) + b_3(x - 0)(x - 1)(x + 1) + b_4(x - 0)(x - 1)(x + 1)(x - 2)$$

$$f_4(x) = b_0 + b_1(x) + b_2(x)(x - 1) + b_3(x)(x - 1)(x + 1) + b_4(x)(x - 1)(x + 1)(x - 2)$$

14

To calculate $b_0,\,b_1,\,b_2,\,b_3$, we can construct a divided difference table as

i	X_i	$f[x_i]$	<i>f</i> [,]	f[,,]	f[,,,]	$f[\ ,,,,]$
0	0	-5				
1	1	-3				
2	-1	-15				
3	2	39				
4	-2	-9				

i	0	1	2	3	4
x_i	0	1	-1	2	-2
$f(x_i)$	-5	-3	-15	39	-9

			Divided Difference (b _n)					
			First	Second	Third	Fourth		
i	x_i	<i>f</i> []	f[,]	f[,,]	f[,,,]	f[,,,,]		
0	0	-5	$f[x_1, x_0]$	$f[x_2, x_1, x_0]$	$f[x_3, x_2, x_1, x_0]$	$f[x_4, x_3, x_2, x_1, x_0]$		
1	1	-3	$f[x_2, x_1]$	$f[x_3, x_2, x_1]$	$f[x_4, x_3, x_2, x_1]$			
2	-1	-15	$f[x_3, x_2]$	$f[x_4, x_3, x_2]$				
3	2	39	$f[x_4, x_3]$					
4	-2	- 9						

$$f[x_j, x_{j-1}, ..., x_{i+1}, x_i] = \frac{f[x_j, ..., x_{i+1}] - f[x_{j-1}, ..., x_i]}{x_j - x_i}$$

i	x_i	<i>f</i> []	f[,]	f[,,]	f[,,,]	$f[\ ,\ ,\ ,\]$
0	0	-5	2			
1	1	-3	6	$f[x_1, x_0] = \frac{1}{2}$	$\frac{f[x_1] - f[x_0]}{x_1 - x_0} =$	$=\frac{-3-(-5)}{1}=2$
2	-1	-15	18		$\frac{\lambda_1 - \lambda_0}{1}$	1-0
3	2	39	12	$f[x_2, x_1] = \frac{f}{f}$	$\frac{f[x_2] - f[x_1]}{f[x_2]} =$	$=\frac{-15-(-3)}{1}=6$
4	-2	-9			$x_2 - x_1$	-1-1

$$f[x_3, x_2] = \frac{f[x_3] - f[x_2]}{x_3 - x_2} = \frac{39 - (-15)}{2 - (-1)} = 18$$

$$f[x_4, x_3] = \frac{f[x_4] - f[x_3]}{x_4 - x_3} = \frac{-9 - (39)}{-2 - 2} = 12$$

i	X_i	f[]	f[,]	f[,,]	f[,,,]	f[,,,,]
0	0	-5	2	-4	$f[x_2, x_2]$	$[x_0]$
1	1	-3	6	12	$=\frac{f[x_2]}{x_2}$	$[x_1] - f[x_1, x_0]$
2	-1	-15	18	6		$x_2 - x_0$
3	2	39	12		$=\frac{6-2}{1}$	$\frac{2}{0} = -4$
4	-2	-9			$f[x \ x \ x]$	

$$f[x_4, x_3, x_2]$$

$$= \frac{f[x_4, x_3] - f[x_3, x_2]}{x_4 - x_2}$$

$$= \frac{12 - 18}{-2 - (-1)} = 6$$

 $= \frac{f[x_3, x_2, x_1]}{f[x_3, x_2, x_1]}$ $= \frac{f[x_3, x_2] - f[x_2, x_1]}{x_3 - x_1}$ $= \frac{18 - 6}{2 - 1} = 12$

i	X_i	<i>f</i> []	f[,]	f[,,]	f[,,,]	f[,,,,]
0	0	-5	2	-4	8	
1	1	-3	6	12	2	
2	-1	-15	18	6		
3	2	39	12			
4	-2	-9				

$$f[x_3, x_2, x_1, x_0]$$

$$= \frac{f[x_3, x_2, x_1] - f[x_2, x_1, x_0]}{x_3 - x_0}$$

$$= \frac{12 - (-4)}{2 - 0} = 8$$

i	x_i	<i>f</i> []	f[,]	f[,,]	f[,,,]	f[,,,,]
0	0	-5	2	-4	8	3
1	1	-3	6	12	2	
2	-1	-15	18	6		
3	2	39	12		$[x_3, x_2, x_1, x_0]$	
4	-2	-9		$=\frac{f[x]}{x}$	$[x_4, x_3, x_2, x_1] - f$	
				$=\frac{2-}{-2}$	$\frac{x_4 - x_0}{-8} = 3$)

i	X_i	f[]	<i>f</i> [,]	$f[\ ,\ ,\]$	$f[\ ,,,]$	f[,,,]
0	0 (-5	2	-4	8	3
1	1	$-3 b_0$	b_1	12 b_2	b_3	\bigcup_{b_4}
2	-1	-15	18	6		
3	2	39	12			
4	-2	-9				

Thus the polynomial is:

$$f_4(x) = -5 + 2(x) - 4(x)(x-1) + 8(x)(x-1)(x+1)$$
$$+3(x)(x-1)(x+1)(x-2)$$

Errors of Newton's Interpolating Polynomials

Notice that the structure of Eq. is similar to the Taylor series expansion in the sense that terms are added sequentially to capture the higher-order behavior of the underlying function.

Consequently, as with the Taylor series, if the true underlying function is an nth-order polynomial, the nth-order interpolating polynomial based on n+1 data points will yield exact results.

$$R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x_{i+1} - x_i)^{n+1}$$

$$R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)(x - x_1) \cdots (x - x_n)$$

where ξ is somewhere in the interval containing the unknown and the data.

$$R_n = f[x, x_n, x_{n-1}, \dots, x_0](x - x_0)(x - x_1) \cdots (x - x_n)$$

