Lecture-9&10: Numerical
Interpolation

Md. Tanver Hossain
Department of Mechanical Engineering, BUET

http://tantusher.buet.ac.bd

= To estimate intermediate values between precise data points most
commonly used method used is polynomial interpolation

= For n+l data points, there is only one polynomial of order n that
passes through all n+1 data points

f(X)=a,+aX+a,X +...... +a_x

= There are two different ways regarding the formats of the polynomial
expression, namely:
= The Newton polynomial of interpolation
= The Langrange polynomial of interpolation

A A A

(a) (b) (o)
(a) first-order (linear) connecting two points, (b) second order (quadratic or parabolic)
connecting three points(c) third-order (cubic) connecting four points.

Newton’s Divided-Difference Interpolating*polynomial

= Linear Interpolation

» The simplest form of interpolation

= The interpolating polynomial is of first order/linear (i.e. two points are
necessary)

X=X, X3 — Xo f(x)
f(x)= f(x)e 1= T00) 6y
X — %o

= The slope of the interpolating polynomial is
the finite divided-difference
approximation of the first derivative

» The smaller the interval, the better the
approximation

X)

T —

- Estimate the natural logarithm of 2 using linear
interpolation.

flx) 4 Two linear interpolations
£ = In x to estimate In 2. Note how
the smaller interval
provides a better
estimate.

2_

True
£ (%)

Linear estimates

0 {J | |
0 5 X

L

~ Newton’s Divided-Difference Interpolating polynomial

Quadratic Interpolation

Linear approximation is very raw

The accuracy of interpolation can be improved by introducing higher order
interpolation polynomial if more data points are known

Let us assume three data points are known at X,, X, and X,

£, (%) =y + by (X — X)+ b, (X = %, XX — %)

f,(x)=h, +bx—bx, +b, (x2 — XX, — XX, + xoxl)
= by, + bx —bx, +b,X* —h,xx, —h,xx, +b,X,%,

= bo — blxo + b2X0X1 + (bl — bzxo — ble)x + bzX2

f,(x)=a,+ax+a,x’

Our goal
8y =y — X, + b, X% _
a, =b, —b,x, —b,X To determine the constants b, b,, and b,
a,=Db

2 2

—

f(X2)= b, +b1(X2 - X0)+b2(X2 - Xo)(xz - Xl)
= by +b1(X2 —X X - X0)+b2(X2 - Xo)(xz - Xl)
= bo + bl(x2 - X1)+ b1(X1 - Xo)+ bz(xz - Xo)(xz - Xl)

—b+b1(x =%)+ F06) = (%) + by (%, =%)M, — %)
(X)+b1(X2 Xl) ()—f(Xo)+b2(X2—XO)(X2—X1)
= by (% =%)+ (%) + by (X, =%, J(x, — %)
F(x2)— £(x) =y, =%,)+b,(x, = %, J(x, =%,
f

Fo0)= 1), .\ o
o Dbl =)

X f(X) f(X) (2)_f(X1) f(Xl)—f(XO)
P =)= Y T T k))
()= Fx) (%)= 1 ()
Cex) (%)
‘ (Xz_xo)

f, (%) = by + 1, (X — X%,)+, (x = %, X — %)
b, = f(x,)
NRIOSIS
)= 1(6))= 1)
s (o)

= Second order interpolation equation contains one extraterm
In comparison to that of a first order interpolation equation
that introduces second order curvature

—

Analysis

Fit a second-order polynomial to the three points.
Use the polynomial to evaluate In 2.

1 flx,) =0
4 flx)=1386294
6 flx,)=1.791759

Xo
X;
X

T ——

General Form of Newton’s Interpolating polynomial

= Nth order Interpolation polynomial
» To fit an nth-order polynomial for n + 1 data points as:

fn(x) — bo +b1(X— Xo) + bz(x_ Xo)(x_ Xl) +“'bn(x_ Xo)(x_ Xl)"'(x_ Xn—l)

= Known Data points [X,, f(Xg)], [X1, T(X))], - - -, [X,, f(X,)] can be used to evaluate
the coefficients b, , b, , ..., b, as:

b0 =1 :Xo] — f(Xo)

b, = F[x, %]
b, = T[X,, X, %]

bn — f [Xn’ Xn—l’“"xl’ XO]

» The bracketed function evaluations f [x;, x; | are finite divided differences

—

T

ME 261: Numerical
Analysis

- Example, the first finite divided difference is represented generally
as
f(x;) — f(x;)

Xj_Xj

f‘[XI'.. Xj] =

» The second finite divided difference, which represents the
difference of two first divided differences, is expressed generally as

flxi, x;] — flxj, x4

flxi, x5, x¢] =
X; — X

- Similarly, the nth finite divided difference is

flxn, Xp—1, . .., x1] — flxp_1. Xp—2, . .., X0l

flx,, Xp—1, ..., X1, Xp] =
Xﬂ - X{}

—

T

bo = f[Xo]: f(xo)
b1 — f[X11Xo] — f[Xl]_ 1:[Xo] _ f(x1)_ f(Xo)

X, =X X, — X
F(X)—T(x) T(x)-T1(X)
b2: f[XZ’Xlixo]: f[XZ’Xl]_ f[Xl’XO]Z X, =% X = %
Xa = Xo X, — X

b = £[x % s x] = D0 XXl D X K]

| X, — X,
b,: First Finite divided difference [~ f(X)]
b,: Second Finite divided difference [~ " (X)]

b,: n'" Finite divided difference

T
12

i X; f(x;) First Second Third

0 X0 flxo)) —>» f[, xo] —» flx, x, Xo] —> f[x3, x2, x1, x0]
| X1 1(() 4 X’2 X]] 4 1[X3 X2, X

2 X2 flxo) _— ; flxs, xo] _—>

3 X3 f(x3) __—

FIGURE 18.5

Graphical depiction of the recursive nature of finite divided differences.

f[xj 1 Xi+1]_ f[Xj—]_!"'1 Xi]

FIX; X gaees X i1 =

FII
- mple :

Construct a 4™ order polynomial in Newton form that passes through the
following points: -
| 0|1 |2 (3 |4

f(x) | -5 |-3 |-15 |39 |-9

4th order polynomial:

f4(X) = b0 T bl(x - Xo) T bz(x - Xo)(x B Xl) T b3(X - Xo)(x B X1)(X B Xz)
+ B, (X = X5) (X = X) (X = %,) (X = X;)

f,(X) =D, +b,(x—0)+h, (X —0)(X—1) + by(x — 0)(Xx —1)(X +1)
+b,(x-0)(x-1)(x+1)(x—2)

f,(%) = by + B, (X) + b, (X)(x — 1) + b, (X)(x ~1)(x +1)
+b,(X)(x-1)(x+1)(x—2)

To calculate by, by, b,, b;, we can construct a divided difference
table as

S BT L Y A D N P B B Y

0 -5

1 11 |-3

2 |-1-15

3 |2 |39

4 -2 1-9

T i 0 1 12 |3 |4

TIx1=1(x) " o 1 11 1 |-
f(x;) -5 -3 |-15 (39 |-9

15

Divided Difference (b,)
First Second Third Fourth

Lo |10 LT (i ...] fi,,..1

0 10 -5 |fIXg, Xo] [T[X5, Xq, Xol | T[X3: Xo1 X1, Xo] [1[Xas Xg, X5, X3, Xol
111 -3 |1X5 Xl | TIXs, Xa, Xq] | T[X,, X3, X5, X4]

2 -1 |-15 | f[X3, X5] | F[X4, X3, X5

3 |2 |39 [f[x,, X5]

4 |-2]-9

16

To calculate b, by, b,, b;, we can construct a divided
difference table as

x| T[] fl,] fl,,] f[,,,] fl,,,,]
o : > fIxI= %] —3-(-5)
b X 1= T1%] —-3-(-5)
1 |1 |-3 6 . fIx,%X]= « x 1.0 =2
2 |-1|-15 18 | | []
3 |2 |39 12 \Kf[xz,xl]f[x)i]_;[xl]12_(13)6
4 -2 -9 \ | 1:| 2 fl | [
N
f:X4,X3]:f[X4]_f[X3]:_9_(39):12
X, — X5 —2-2

17

To calculate b, by, b,, b;, we can construct a divided
difference table as

i X| f[] f[)] f[!!] f[;!!] f[1111]
0 -5 2 -4 <+— T[X,, X, X,]
1 1 -3 6 12 _ f[XZ’Xl]_ f[Xl’XO]
2 |-11-15 18 6 \ X2 =%
% 6—2
3 2 |39 12 \ 21—02—4
5| \ —
4 2 |-9 X3, Xy, %]
T1X40 X5 %,] _ fIX, % 1— X, %]
_ fIX,, X3]— F[X5, %] - X, — X,
Xa =% 18—6
_ 12-18 _6 21 =12
—2—(-1) — -

18

To calculate b, by, b,, b;, we can construct a divided
difference table as

L% (1] i,] i,] fih..1 |t]
0 5 2 4 48

1 (1 |-3 2 /|2

2 |-1]-15 18 6 / |

3 |2 |39 12 /

4 |-2 -9

f[X3,X2,X1,XO]

_ f[Xg,Xz,Xl]— f[Xzixl’Xo]
X3 — X,
_12-(-4) g
2-0

f[X4,X3,X2,X1]
_ 1E[X4’X3’X2]_ f[Xsixz’Xl]

19

To calculate b, by, b,, b;, we can construct a divided
difference table as

X | T[] fl,] fl,,] fl.,.] fl,,,,]
0 -5 2 -4 8 3
1 11 |-3 6 12 2
2 |-1|-15 18 6
3 |2 |39 12 FIX00 Xg X0 X, %
4 |29 _ P Xa0 Xp, X] = TIXs0 X5, X0 X1]
X, — %o
_2-8 _,
-2-0

20

To calculate b, by, b,, b;, we can construct a divided
difference table as

a0 L] .1 .1 L.,
0 jo(5) (|2) () (I8) (|3)

1 (1|3 b [6 b, [12b, [2by [b
2 |-11]-15 18 6

3 (2 |39 12

4 |-21-9

Thus the polynomial is:
f,(X) =-5+2(x) —4(x)(x—-1) +8(x)(x —=1)(x +1)

+3(X)(X =D (x+1)(x—2)

T —

Errors of Newton’s Interpolating Polynomials

Notice that the structure of Eq. is similar to the Taylor series expansion in the
sense that terms are added sequentially to capture the higher-order behavior
of the underlying function.

Consequently, as with the Taylor series, if the true underlying function is an
nth-order polynomial, the nth-order interpolating polynomial based onn + 1
data points will yield exact results.

f{ﬂ-l-]}(g) il
R, = TERN (Xit1 — Xi)
rD ()
n = T 1}'! (x — xp)(x — x1) -+ - (X — Xp)

where ¢ is somewhere in the interval containing the unknown and the data.

R, = flx, xp, Xp—1, ..., X0l (x — x0)(x — x1) - - - (X — Xp)

—

